
Predictive Maintenance Toolbox™ Release Notes

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Predictive Maintenance Toolbox™ Release Notes
© COPYRIGHT 2018–2023 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

R2023a

Battery Anomaly Detection: Use correlation to detect anomalies in
lithium-ion battery pack . 1-2

Diagnostic Feature Designer: Automatically generate features for
rotating machinery signals. 1-2

Diagnostic Feature Designer: Generate MATLAB Coder compliant code
for streaming data . 1-2

Diagnostic Feature Designer: Export Simulink block that extracts top-
ranked features from measured signals . 1-2

Diagnostic Feature Designer: Compute envelope of input signals to detect
rotating machinery faults . 1-3

Diagnostic Feature Designer: Import labeled signal sets from Signal
Processing Toolbox . 1-3

Diagnostic Feature Designer: Display features in ranked order for feature
selection and plotting . 1-3

R2022b

Diagnostic Feature Designer: Automatically generate a diverse feature set
using Auto Features . 2-2

Diagnostic Feature Designer: Create custom features to use in the app
. 2-2

Diagnostic Feature Designer: Preview results when applying time series
transformations to signal data . 2-2

Diagnostic Feature Designer: Generate AR model-based features 2-2

Lithium-Ion Battery Fault Detection: Identify the worst cell in a battery
pack using meanDifferenceModel . 2-2

New Example: Broken Rotor Fault Detection in AC Induction Motors
Using Vibration and Electrical Signals . 2-3

iii

Contents

R2022a

Diagnostic Feature Designer: View session variables by type and obtain
processing sequence and history . 3-2

Diagnostic Feature Designer: Extract time series features from signal
data . 3-2

Remaining Useful Life (RUL) Prediction: Generate C/C++ code using
MATLAB Coder for RUL prediction based on a similarity model 3-2

Rotating Machinery Metrics: Generate C/C++ code using MATLAB Coder
to extract time-synchronous averaged signals . 3-3

Nonlinear Feature Extraction: Generate C/C++ code using MATLAB Coder
to identify signal-based nonlinear features . 3-3

Time-Frequency Feature Extraction: Generate C/C++ code using MATLAB
Coder to extract spectral, temporal, and joint moments of time-
frequency distributions from signals . 3-3

New Example: ThingSpeak Dashboard for Live RUL Estimation of a Servo
Motor Gear Train . 3-3

R2021b

Diagnostic Feature Designer: Generate spectral features for
characteristic fault frequency bands in rotating machinery 4-2

Diagnostic Feature Designer: Rank features extracted from unlabeled
data . 4-2

Diagnostic Feature Designer: Use a streamlined workflow for plotting,
data processing, and feature extraction . 4-2

Remaining Useful Life (RUL) Prediction: Generate C/C++ code using
MATLAB Coder for RUL prediction that is based on a survival model
. 4-3

Rotating Machinery Metrics: Generate C/C++ code using MATLAB Coder
for gear condition metrics and fault band metrics 4-3

New Example: Live RUL Estimation of a Servo Gear Train using
ThingSpeak . 4-4

New Example: Fault detection and diagnosis using artificial intelligence
. 4-4

iv Contents

R2021a

Diagnostic Feature Designer: Import data using an updated interface
with more flexible options . 5-2

Diagnostic Feature Designer: Preselect signals and spectra to process
. 5-2

Diagnostic Feature Designer: Use tooltips to obtain the history of
processing and data sources for derived variables 5-2

Ensemble Datastores: Use the subset function to extract ensemble
members that you specify from an existing ensemble into a new
ensemble . 5-2

Remaining Useful Life (RUL) Prediction: Generate C/C++ code using
MATLAB Coder for the prediction, update, and restart of an RUL
prediction that is based on a degradation model 5-3

Live Editor Tasks: Interactively define fault frequency bands and extract
spectral metrics . 5-3

RUL Examples: Predict RUL using artificial intelligence 5-3

R2020b

Bug Fixes

R2020a

Diagnostic Feature Designer: Generate MATLAB code in the app 7-2

R2019b

Live Editor Tasks: Interactively perform phase space reconstruction and
extract signal-based condition indicators . 8-2

Spectral Analysis: Define frequency bands and extract spectral features
. 8-2

v

Prognostic Ranking in Diagnostic Feature Designer: Rank features to
determine best indicators of system degradation in Diagnostic Feature
Designer . 8-3

Machine-Specific Rotation Speeds: Filter TSA signals using machine-
specific rotation speeds in Diagnostic Feature Designer 8-3

generateSimulationEnsemble: Control display of simulation progress
when generating a simulation ensemble . 8-3

R2019a

Diagnostic Feature Designer: Interactively extract, visualize, and rank
features from measured or simulated data for machine diagnostics and
prognostics . 9-2

Gear Condition Metrics: Extract standard gear condition indicators from
time-synchronous averaged signals . 9-2

fileEnsembleDatastore: Specify list of ensemble datastore file names . . . 9-2

R2018b

Feature Selection Metrics: Evaluate features to determine best indicators
of system degradation and improve accuracy of remaining useful life
predictions . 10-2

Features for Rotating Machinery: Extract the residual, difference, and
regular signals from a time-synchronous averaged signal to generate
diagnostic feature . 10-2

fileEnsembleDatastore Object: Read all variable types from ensemble
member while loading file only once . 10-2

Ensemble Datastore Objects: Read multiple ensemble members in one
operation . 10-2

fileEnsembleDatastore Object: Create ensembles of files with multiple file
extensions . 10-3

Functionality being removed or changed . 10-3
DataVariablesFcn, IndependentVariablesFcn, and ConditionVariablesFcn

properties of fileEnsembleDatastore will be removed 10-3
currentValue syntax of predictRUL not recommended 10-4

vi Contents

R2018a

Survival, similarity, and time-series models for remaining useful life
(RUL) estimation . 11-2

Time, frequency, and time-frequency domain feature extraction methods
for designing condition indicators . 11-2

Managing and labeling of sensor data imported from local files, Amazon
S3, Windows Azure Blob Storage, and Hadoop Distributed File System
. 11-2

Managing and labeling of simulated machine data from Simulink models
. 11-2

Examples for developing predictive maintenance algorithms for motors,
gearboxes, batteries, and other machines . 11-2

vii

R2023a

Version: 2.7

New Features

Bug Fixes

1

Battery Anomaly Detection: Use correlation to detect anomalies in
lithium-ion battery pack
You can now find the worst cell in a serially connected battery pack using the
adjacentPairCorrelationModel function. This function analyzes the voltage correlation between
adjacent cells in a serially connected lithium-ion battery pack. Low correlation indicates a possible
fault condition, such as an internal short circuit. adjacentPairCorrelationModel complements
the meanDifferenceModel function, which was added in R2022b.

For more information, see adjacentPairCorrelationModel.

Diagnostic Feature Designer: Automatically generate features for
rotating machinery signals.
You can now generate features for rotating machinery signals when you use Auto Features, which
was introduced in R2022b. This capability expands upon the previous set of features that you could
generate automatically. When you apply the Rotating Machinery option to a time-domain signal
using Auto Features, the app performs processing on the selected variable to create new variables
from which the app then extracts specialized features, as described in the following list.

• TSA processing and TSA filtering operations produce new time-domain signals that provide
Rotating Machinery Features features.

• Signal-envelope processing produces a new time-domain signal that envelopes the original signal
near critical frequencies and provides an information-rich source for Signal Features features.
From the signal envelope, the app also computes an order spectrum and extracts Spectral
Features features from the spectrum.

For more information, see “Generate Features Automatically in Diagnostic Feature Designer”

Diagnostic Feature Designer: Generate MATLAB Coder compliant code
for streaming data
You can now export a function from the app to perform feature extraction on streaming data.
Generate C/C++ code from this function using MATLAB® Coder™ for feature extraction on embedded
hardware.

Generating a MATLAB function formatted for streaming data is similar to generating a function for
feature extraction from historic data. From this new function, you can generate C or C++ code using
codegen

Features derived from a spectrum created using an autoregressive model or a state-space model, or
from an ensemble statistics signal, are not supported for streaming data.

For more information, see “Export Feature Extraction Function and Simulink Model for Streaming
Data”.

Diagnostic Feature Designer: Export Simulink block that extracts top-
ranked features from measured signals
You can now export a Simulink® block that contains the feature-extraction computations that the app
performed for your highest ranked features. Previously, if you wanted to incorporate feature

R2023a

1-2

extraction into a Simulink model, you had to recreate the feature computations manually, such as in a
MATLAB function block. You can integrate the exported block into a Simulink model and use the
block to convert raw data into features as inputs to the model.

The Simulink block uses the same streaming-formatted function that you obtain when you export the
function directly, and has the same limitations.

You can use this capability only for feature tables based on full signals and not framed (segmented)
signals.

For more information, see “Export Feature Extraction Function and Simulink Model for Streaming
Data”.

Diagnostic Feature Designer: Compute envelope of input signals to
detect rotating machinery faults
You can now extract low-bandwidth signal envelopes from high-bandwidth signal data to isolate low-
frequency vibration modulation near machine resonances, and then use the extracted signal to detect
faults in rotating machinery.

Periodic impulses due to rotational faults, such as a broken gear tooth, transmit a broad-spectrum
disturbance throughout the machinery. When the impulse rotation-frequency harmonics excite
structural resonances of the machinery, the vibration magnitude increases along with the signal-to-
noise ratio of the vibration signal. Extracting the envelope of the signal near the resonances therefore
provides a rich source of information about faults within the machine.

You can process and extract features from the signal envelope as you would with other time-domain
signals.

For more information, see “Extract Signal Envelopes”.

Diagnostic Feature Designer: Import labeled signal sets from Signal
Processing Toolbox
You can now import labeled signal sets (LSS) from the Signal Labeler app and retain the attribute
labels in the Diagnostic Feature Designer app. Previously, you had to manually create a data
ensemble or fileEnsembleDatastore and append the labels prior to importing the data into
Diagnostic Feature Designer. The signals you import must be full signals and not framed
(segmented) signals.

Labels in LSS can represent fault conditions, operating conditions, or features. Signals can have more
than one label.

For more information, see the Import Labeled Signal Set (LSS) section in “Import Data into
Diagnostic Feature Designer”.

Diagnostic Feature Designer: Display features in ranked order for
feature selection and plotting
You can now view features in ranked order, or alphabetical order, when you use Feature Selector
and when you plot histograms and feature traces. Previously, the order of features and feature plots
was dependent on computation order.

1-3

Viewing features in ranked order allows you to select highly ranked features for plotting more easily.

Viewing features in alphabetical order allows you to find and select individual features more easily,
regardless of where or if they are ranked.

To plot features, select a feature table, and then, in the Plot gallery, select Histogram or Feature
Trace. Click Feature Selector in the plot tab to choose the order and select the features.

R2023a

1-4

R2022b

Version: 2.6

New Features

Bug Fixes

2

Diagnostic Feature Designer: Automatically generate a diverse
feature set using Auto Features
You can now generate a diverse set of features using the new Auto Features capability. Previously,
you needed to perform each feature extraction operation manually. When you use Auto Features, the
app computes and ranks a set of features from the signal or spectrum variables that you select in the
Variables pane.

For more information, see Generate Features Automatically in Diagnostic Feature Designer.

Diagnostic Feature Designer: Create custom features to use in the
app
You can now create custom features to use with Diagnostic Feature Designer. Previously, you could
extract only features that were built into the app. If you wanted to customize features, you had to
create them outside of the app and then import them into the app to evaluate and rank them with
other features.

For more information, see Create Custom Features in Diagnostic Feature Designer.

Diagnostic Feature Designer: Preview results when applying time
series transformations to signal data
You can now preview your intermediate results when you use the Time Series Processing tab to
stack transformation operations that convert ordinary signals into stationary time series. Previously,
you had to create a new variable by clicking Apply to view how well a set of transformations worked.

For more information about time series processing, see Time Series Processing and Time Series
Features.

Diagnostic Feature Designer: Generate AR model-based features
You can now build autoregressive (AR) models to extract features from your signals. AR models are
useful for rotating machinery that contains elements such as motors, gears, and bearings. The
harmonics of these elements produce sharp peaks in the machine's power spectra. Faults in the
machine elements are likely to disturb the normal harmonics and cause detectable changes in AR
model characteristics, such as model coefficients.

To create AR model-based features, select a signal. Then, select Time-Domain Features > Model-
Based Features. In the Model-Based Features tab, specify your model order. Then select the
features that you want to generate. The tab provides features for model parameters (such as
coefficients and natural frequencies), model fit, and estimation residuals.

Lithium-Ion Battery Fault Detection: Identify the worst cell in a
battery pack using meanDifferenceModel
You can now find the worst cell in a serially connected battery pack using the
meanDifferenceModel function. This function evaluates the consistency of the open-circuit
voltages (OCVs) for the battery cells by estimating the deviation of the cell OCV from the mean OCV
of the battery pack. Large deviations indicate a possible fault condition, such as an internal short

R2022b

2-2

https://www.mathworks.com/help/releases/R2022b/predmaint/ug/generate-features-automatically-in-diagnostic-feature-designer.html
https://www.mathworks.com/help/releases/R2022b/predmaint/ug/create-custom-features-in-diagnostic-feature-designer.html
https://www.mathworks.com/help/releases/R2022b/predmaint/ug/time-series-processing-and-time-series-features.html
https://www.mathworks.com/help/releases/R2022b/predmaint/ug/time-series-processing-and-time-series-features.html

circuit. The function returns the index of the cell with the largest deviation, or the worst cell. The
function can also return the estimated OCV deviations, as well as the internal resistance deviations
from the resistance mean. If you omit output arguments, the function plots the OCV deviation for all
cells.

For more information, see meanDifferenceModel.

New Example: Broken Rotor Fault Detection in AC Induction Motors
Using Vibration and Electrical Signals
A new example illustrates broken rotor fault detection in three-phase AC induction motors using
features from the Diagnostic Feature Designer and Classification Learner apps.

• Broken Rotor Fault Detection in AC Induction Motors Using Vibration and Electrical Signals

2-3

https://www.mathworks.com/help/releases/R2022b/predmaint/ref/meandifferencemodel.html
https://www.mathworks.com/help/releases/R2022b/predmaint/ref/diagnosticfeaturedesigner-app.html
https://www.mathworks.com/help/releases/R2022b/stats/classificationlearner-app.html
https://www.mathworks.com/help/releases/R2022b/predmaint/ug/broken-rotor-fault-detection-in-ac-induction-motors-using-vibration-and-electrical-signals.html

R2022a

Version: 2.5

New Features

Bug Fixes

3

Diagnostic Feature Designer: View session variables by type and
obtain processing sequence and history
You can now view your variables by their type in the Diagnostic Feature Designer Variables and
Details panes. Previously, the Data Browser pane listed variables in the order that you created
them. The new Variables pane organizes your variables into four groups—Signals, Spectra, Features,
and Condition Variables—that make it easier to find the variable you want to analyze next. Each
group contains subgroups to separate full and framed signal data.

When you select a variable, you can view its processing history in the app, as well as additional
information, in the new Details pane. Previously, to obtain processing history, you needed to activate
a tooltip by pointing to the variable in the Data Browser pane. The Details pane displays the
variable or variables from which your selected variable was computed. You can view the full
processing sequence by clicking History View. You can view the parameters of the most recent
processing step for the selected variable by clicking Parameters. This information is available for
variables that have been computed during the current session. The Details pane also provides
additional information about the selected variable, including its independent variable, its frame
policy, and the data set that contains it.

For more information about using the Variables and Details panes, see Process Data and Explore
Features in Diagnostic Feature Designer.

Diagnostic Feature Designer: Extract time series features from signal
data
You can now transform your signals into stationary time series, and from the time series, extract
specialized features in Diagnostic Feature Designer. Time series features provide unique insights
into the data.

A stationary time series has no trends or periodic fluctuations, and constant variance and
autocorrelation over time. Second-order stationary signals, which are usually sufficient for
engineering applications, have zero mean and constant variance. The app provides a set of processing
transformations that you can use to eliminate nonstationary components and reduce time-dependent
variance. Once you have created the time series, you can extract features that include metrics on
distribution, autocorrelation, and partial autocorrelation.

To transform signals into stationary time series in the app, select the source signal, and then, in the
Feature Designer tab, in the Data Processing section, select Residue Generation > Time-Series
Processing.

To extract time series features from stationary time series, select the time series, and then, in the
Feature Designer tab, in the Feature Generation section, select Time-Domain Features > Time-
Series Features.

For more information, see Time Series Processing and Time Series Features.

Remaining Useful Life (RUL) Prediction: Generate C/C++ code using
MATLAB Coder for RUL prediction based on a similarity model
You can now use MATLAB Coder functionality to generate C/C++ code using
hashSimilarityModel, pairwiseSimilarityModel, or residualSimilarityModel RUL

R2022a

3-2

https://www.mathworks.com/help/releases/R2022a/predmaint/gs/explore-features-in-diagnostic-feature-designer.html
https://www.mathworks.com/help/releases/R2022a/predmaint/gs/explore-features-in-diagnostic-feature-designer.html
https://www.mathworks.com/help/releases/R2022a/predmaint/ug/time-series-processing-and-time-series-features.html
https://www.mathworks.com/help/releases/R2022a/predmaint/ref/hashsimilaritymodel.html
https://www.mathworks.com/help/releases/R2022a/predmaint/ref/pairwisesimilaritymodel.html
https://www.mathworks.com/help/releases/R2022a/predmaint/ref/residualsimilaritymodel.html

models. Code generation is supported for the predictRUL function with these models. Previously,
you could generate C/C++ code only for degradation-based and survival-based RUL models. Now,
code generation is supported for all Predictive Maintenance Toolbox™ RUL model types.

For an example of code generation for an RUL model, see Generate Code for Predicting Remaining
Useful Life.

Rotating Machinery Metrics: Generate C/C++ code using MATLAB
Coder to extract time-synchronous averaged signals
You can now use MATLAB Coder functionality to generate C/C++ code for workflows that use the
time-synchronous averaging functions — tsadifference, tsaregular, and tsaresidual.

Syntaxes that generate plots are not supported for code generation.

Nonlinear Feature Extraction: Generate C/C++ code using MATLAB
Coder to identify signal-based nonlinear features
You can now use MATLAB Coder functionality to generate C/C++ code to identify signal-based
nonlinear features in time-series data using phaseSpaceReconstruction, approximateEntropy,
lyapunovExponent or correlationDimension functions.

Syntaxes that generate plots are not supported for code generation.

Time-Frequency Feature Extraction: Generate C/C++ code using
MATLAB Coder to extract spectral, temporal, and joint moments of
time-frequency distributions from signals
You can now use MATLAB Coder functionality to generate C/C++ code for workflows that use the
time-frequency moment functions—tfsmoment, tftmoment, and tfmoment.

For tfsmoment only, to generate C/C++ code, the input argument order must be a scalar and not a
vector.

New Example: ThingSpeak Dashboard for Live RUL Estimation of a
Servo Motor Gear Train
A new example illustrates setting up a ThingSpeak™ dashboard for real-time Remaining Useful Life
(RUL) estimation and visualization of a servo motor gear train.

• ThingSpeak Dashboard for Live RUL Estimation of a Servo Motor Gear Train

3-3

https://www.mathworks.com/help/releases/R2022a/predmaint/ref/lineardegradationmodel.predictrul.html
https://www.mathworks.com/help/releases/R2022a/predmaint/ug/generate-code-for-predicting-remaining-useful-life.html
https://www.mathworks.com/help/releases/R2022a/predmaint/ug/generate-code-for-predicting-remaining-useful-life.html
https://www.mathworks.com/help/releases/R2022a/predmaint/ref/tsadifference.html
https://www.mathworks.com/help/releases/R2022a/predmaint/ref/tsaregular.html
https://www.mathworks.com/help/releases/R2022a/predmaint/ref/tsaresidual.html
https://www.mathworks.com/help/releases/R2022a/predmaint/ref/phasespacereconstruction.html
https://www.mathworks.com/help/releases/R2022a/predmaint/ref/approximateentropy.html
https://www.mathworks.com/help/releases/R2022a/predmaint/ref/lyapunovexponent.html
https://www.mathworks.com/help/releases/R2022a/predmaint/ref/correlationdimension.html
https://www.mathworks.com/help/releases/R2022a/predmaint/ref/tfsmoment.html
https://www.mathworks.com/help/releases/R2022a/predmaint/ref/tftmoment.html
https://www.mathworks.com/help/releases/R2022a/predmaint/ref/tfmoment.html
https://www.mathworks.com/help/releases/R2022a/predmaint/ug/thingspeak-dashboard-for-live-rul-estimation-of-a-servo-motor-gear-train.html

R2021b

Version: 2.4

New Features

Bug Fixes

4

Diagnostic Feature Designer: Generate spectral features for
characteristic fault frequency bands in rotating machinery
You can now generate spectral features, such as peak amplitude or band power, for specific frequency
bands when you work with data from rotating machinery. Previously, you could extract spectral
features only across a single frequency range. These specialized features allow you to focus your
feature extraction within frequency bands that bound the characteristic fault harmonics for your
system. You specify these fault bands by entering the physical characteristics of your machinery, such
as the number of gear teeth or the bearing ball diameter. You can also specify custom bands that are
physically dependent only on the primary rotational speed.

For more information about computing features using fault bands in the app, see Spectral Features
Based on Fault Bands.

Diagnostic Feature Designer: Rank features extracted from unlabeled
data
You can now perform ranking on features that you extract from unlabeled data. Previously, you could
perform ranking only when your ensemble data contained labels such as healthy and faulty, or
when you were performing prognostic ranking to support remaining useful life (RUL) prediction.

Ranking methods that use condition variables with data labels are now grouped under Supervised
Ranking. These methods, formerly grouped under Classification Ranking, do not change. Ranking
methods that do not use data labels are grouped under Unsupervised Ranking. The app offers two
ranking options in this group.

1 Laplacian Score — Scores reflect how well features cluster with other features to form distinct
groupings. For more information, see fsulaplacian.

2 Variance — Ranks features based on their variance. Features with low variances tend to add less
useful information to a model.

Unsupervised ranking is available in Diagnostic Feature Designer, but not in Classification
Learner. If you plan to export your features to Classification Learner to train a model, you must
use ensemble data that includes labels.

For more information on feature ranking in the app, see Feature Ranking Tab in Diagnostic
Feature Designer.

Diagnostic Feature Designer: Use a streamlined workflow for plotting,
data processing, and feature extraction
The app now includes updates that can streamline your workflow. These updates include the
following changes.

• Set general plot preferences — You can now directly specify plot options that apply to all the plots
that you generate. For example, for all signals and spectra, you can specify condition-variable
grouping and the number of curves to plot. Previously, you needed to generate a plot before
setting preferences and could not set customized defaults for all your plots. You can make these
specifications before you generate your first plot, or anytime during your session. You can override
these preferences to customize specific plots, but still retain the preferences as a default for
subsequent plots. For more information about plot options, see Import and Visualize Ensemble
Data in Diagnostic Feature Designer.

R2021b

4-2

https://www.mathworks.com/help/releases/R2021b/predmaint/ug/spectral-features-based-on-fault-bands.html
https://www.mathworks.com/help/releases/R2021b/predmaint/ug/spectral-features-based-on-fault-bands.html
https://www.mathworks.com/help/releases/R2021b/stats/fsulaplacian.html
https://www.mathworks.com/help/releases/R2021b/predmaint/ref/diagnosticfeaturedesigner-app.html
https://www.mathworks.com/help/releases/R2021b/predmaint/ref/diagnosticfeaturedesigner-app.html
https://www.mathworks.com/help/releases/R2021b/predmaint/gs/import-and-visualize-data-in-diagnostic-feature-designer.html
https://www.mathworks.com/help/releases/R2021b/predmaint/gs/import-and-visualize-data-in-diagnostic-feature-designer.html

• Preselect signals or spectra for both data processing and feature generation — Previously, for
feature generation, you needed to open a feature dialog box first and then manually select the
source signal or spectrum. For more information about the data processing and feature generation
workflow, see Process Data and Explore Features in Diagnostic Feature Designer.

• Specify frame-based processing directly — Access frame parameters using Frame Policy in the
Computation section of the Feature Designer tab. Previously, you needed to open the
Computation Options dialog box to access frame specification parameters. To select an
independent variable or to use parallel processing, use the Options list that is also in the
Computation section.

• Specify results handling for ensemble datastores during import — For simulation and file
ensemble datastores, you can now specify during import whether to write processing results to
the external data files or app memory. Previously, you made this selection in Computation
Options after you imported an ensemble datastore. For more information, see Import Ensemble
Datastore in Import Data into Diagnostic Feature Designer.

Remaining Useful Life (RUL) Prediction: Generate C/C++ code using
MATLAB Coder for RUL prediction that is based on a survival model
You can now use MATLAB Coder functionality to generate C/C++ code using a
reliabilitySurvivalModel or covariateSurvivalModel object. Previously, you could
generate C/C++ code only for RUL degradation models. For the survival models, code generation is
supported for the predictRUL function.

To generate code for a prediction algorithm using a survival model, follow the same general steps
that you take for a degradation model. Use the saveRULModelForCoder command to save the
model for code generation. Then, use the loadRULModelForCoder to load the model in your entry-
point function. For an example of generating code for an RUL model, see Generate Code for
Predicting Remaining Useful Life.

Rotating Machinery Metrics: Generate C/C++ code using MATLAB
Coder for gear condition metrics and fault band metrics
You can now use MATLAB Coder functionality to generate C/C++ code for the faultBandMetrics
and gearConditionMetrics commands. The following instances are not supported for C/C++ code
generation:

• Data stored in fileEnsembleDatastore and workspaceEnsemble objects, as well as data in
the form of a tall array.

• Position arguments for the gearConditionMetrics command. For instance, the syntax M =
gearConditionMetrics(T,sigvar,difvar,regvar,resvar) is not supported.

• Sorting a table by a table column with values wrapped in cells for the gearConditionMetrics
command. For instance, the values of the column Order must be scalar for the syntax M =
gearConditionMetrics(T,'SortBy','Order').

For more information, see the faultBandMetrics and gearConditionMetrics reference pages.

4-3

https://www.mathworks.com/help/releases/R2021b/predmaint/gs/explore-features-in-diagnostic-feature-designer.html
https://www.mathworks.com/help/releases/R2021b/predmaint/ug/import-data-into-diagnostic-feature-designer.html
https://www.mathworks.com/help/releases/R2021b/predmaint/ref/reliabilitysurvivalmodel.html
https://www.mathworks.com/help/releases/R2021b/predmaint/ref/covariatesurvivalmodel.html
https://www.mathworks.com/help/releases/R2021b/predmaint/ref/lineardegradationmodel.predictrul.html
https://www.mathworks.com/help/releases/R2021b/predmaint/ref/saverulmodelforcoder.html
https://www.mathworks.com/help/releases/R2021b/predmaint/ref/loadrulmodelforcoder.html
https://www.mathworks.com/help/releases/R2021b/predmaint/ug/generate-code-for-predicting-remaining-useful-life.html
https://www.mathworks.com/help/releases/R2021b/predmaint/ug/generate-code-for-predicting-remaining-useful-life.html
https://www.mathworks.com/help/releases/R2021b/predmaint/ref/faultbandmetrics.html
https://www.mathworks.com/help/releases/R2021b/predmaint/ref/gearconditionmetrics.html
https://www.mathworks.com/help/releases/R2021b/predmaint/ref/fileensembledatastore.html
https://www.mathworks.com/help/releases/R2021b/predmaint/ref/workspaceensemble.html
https://www.mathworks.com/help/releases/R2021b/predmaint/ref/gearconditionmetrics.html
https://www.mathworks.com/help/releases/R2021b/predmaint/ref/gearconditionmetrics.html
https://www.mathworks.com/help/releases/R2021b/predmaint/ref/faultbandmetrics.html
https://www.mathworks.com/help/releases/R2021b/predmaint/ref/gearconditionmetrics.html

New Example: Live RUL Estimation of a Servo Gear Train using
ThingSpeak
A new example illustrates real-time Remaining Useful Life (RUL) estimation of a servo motor gear
train using ThingSpeak.

• Live RUL Estimation of a Servo Gear Train using ThingSpeak

New Example: Fault detection and diagnosis using artificial
intelligence
Two new examples illustrate the application of artificial intelligence techniques to fault detection and
diagnosis.

• Rolling Element Bearing Fault Diagnosis Using Deep Learning — Diagnose faults in a rolling
element bearing using a pretrained network.

• Anomaly Detection in Industrial Machinery Using Three-Axis Vibration Data — Detect anomalies
in industrial-machine vibration data using machine learning and deep learning.

R2021b

4-4

https://www.mathworks.com/help/releases/R2021b/predmaint/ug/live-rul-estimation-of-a-servo-gear-train-using-thingspeak.html
https://www.mathworks.com/help/releases/R2021b/predmaint/ug/rolling-element-bearing-fault-diagnosis-using-deep-learning.html
https://www.mathworks.com/help/releases/R2021b/predmaint/ug/anomaly-detection-using-3-axis-vibration-data.html

R2021a

Version: 2.3

New Features

Bug Fixes

5

Diagnostic Feature Designer: Import data using an updated interface
with more flexible options
You can now import data using a single dialog box that provides increased flexibility. Use New
Session to initiate the data import process. New Session replaces Import Data, and initiates a
process that replaces the previous multiple dialog boxes with a single dialog box that allows you to
perform all your import specifications in one place. Within this dialog box, you can now do the
following:

• Select a single data source from your workspace and view all the workspace variables that have
the same internal variables and member format. Use this option when you are importing multiple
data sets. The app simplifies your task by displaying the names of all the compatible data sources
that can be combined with your initial selection.

• Import power and order spectra from a table. Previously, you needed to import spectral data in
an idfrd object.

• Generate, rather than import, a virtual independent variable (IV) such as time or sample index.
This option is the default when your import data does not include time or another IV.

For more information, see Import Data into Diagnostic Feature Designer.

Diagnostic Feature Designer: Preselect signals and spectra to process
You can now preselect the variable in the data browser that you want to use for data processing and
view compatible processing options. Previously, you could use your data browser selection only for
plotting. For more information, see Process Data and Explore Features in Diagnostic Feature
Designer and the Data Processing parameter description in Diagnostic Feature Designer.

Diagnostic Feature Designer: Use tooltips to obtain the history of
processing and data sources for derived variables
When you perform a sequence of operations in the app, you produce a set of derived variables, each
of which is a unique result of the processing history and source variables. You can now obtain that
history from a tooltip that appears when you point to a variable name in the data browser. Previously,
the variable names encapsulated the processing history, and a multistep processing sequence
resulted in a long variable name. For more information, see Process Data and Explore Features in
Diagnostic Feature Designer.

The R2021a history tracking process is fully compatible with saved sessions that use the previous
variable-naming approach. If you open a session that you saved prior to R2021a, the app treats each
saved variable as an original data source and preserves the original concatenated name as a single
source name. When you derive additional variables, the app preserves the original names in their
entirety, but appends processing steps to the new variable name and populates the tooltip according
to the R2021a approach.

Ensemble Datastores: Use the subset function to extract ensemble
members that you specify from an existing ensemble into a new
ensemble
You can now create a new ensemble datastore from a subset of an existing ensemble datastore by
extracting the ensemble members that correspond to the indices you specify.

R2021a

5-2

https://www.mathworks.com/help/releases/R2021a/matlab/ref/table.html
https://www.mathworks.com/help/releases/R2021a/predmaint/ug/import-data-into-diagnostic-feature-designer.html
https://www.mathworks.com/help/releases/R2021a/predmaint/gs/explore-features-in-diagnostic-feature-designer.html
https://www.mathworks.com/help/releases/R2021a/predmaint/gs/explore-features-in-diagnostic-feature-designer.html
https://www.mathworks.com/help/releases/R2021a/predmaint/ref/diagnosticfeaturedesigner-app.html
https://www.mathworks.com/help/releases/R2021a/predmaint/gs/explore-features-in-diagnostic-feature-designer.html
https://www.mathworks.com/help/releases/R2021a/predmaint/gs/explore-features-in-diagnostic-feature-designer.html

Use subset when you want to perform ensemble operations on a specific ensemble member or group
of ensemble members, and when using a sequence of read commands with the source ensemble does
not provide the ensemble members that you want to process.

For more information, see subset.

Remaining Useful Life (RUL) Prediction: Generate C/C++ code using
MATLAB Coder for the prediction, update, and restart of an RUL
prediction that is based on a degradation model
You can now use MATLAB Coder functionality to generate C/C++ code using a
linearDegradationModel or an exponentialDegradationModel. Code generation is supported
for the predictRUL, update, and restart functions.

To generate code for a prediction algorithm using a degradation model, use the new
saveRULModelForCoder command to save the model for code generation. Then, use the
loadRULModelForCoder to load the model in your entry-point function. If you update the model at
run time, you can use the new readState and restoreState commands to preserve the updated
model state. For examples, see:

• Generate Code for Predicting Remaining Useful Life
• Generate Code that Preserves RUL Model State for System Restart

Live Editor Tasks: Interactively define fault frequency bands and
extract spectral metrics
Use the new Extract Spectral Features Live Editor task to interactively define fault frequency
bands of interest and extract spectral metrics like peak amplitude, peak frequency, and band power
from power spectrum data, without writing code. You can define and configure bearing, gear mesh,
and custom fault frequency bands from which targeted spectral metrics of the power spectrum data
can be obtained. The task generates a plot of the frequency bands and power spectrum data that lets
you interactively explore the effects of changing parameter values and options. The task also
automatically generates code that becomes part of your live script.

For more information, see Extract Spectral Features. For an example, see Analyze Gear Train Data
and Extract Spectral Features Using Live Editor Tasks.

RUL Examples: Predict RUL using artificial intelligence
New examples illustrate RUL prediction using techniques of machine learning and deep learning.

• Battery Cycle Life Prediction From Initial Operation Data
• Remaining Useful Life Estimation using Convolutional Neural Network

5-3

https://www.mathworks.com/help/releases/R2021a/predmaint/ref/fileensembledatastore.read.html
https://www.mathworks.com/help/releases/R2021a/predmaint/ref/fileensembledatastore.subset.html
https://www.mathworks.com/help/releases/R2021a/predmaint/ref/lineardegradationmodel.html
https://www.mathworks.com/help/releases/R2021a/predmaint/ref/exponentialdegradationmodel.html
https://www.mathworks.com/help/releases/R2021a/predmaint/ref/lineardegradationmodel.predictrul.html
https://www.mathworks.com/help/releases/R2021a/predmaint/ref/lineardegradationmodel.update.html
https://www.mathworks.com/help/releases/R2021a/predmaint/ref/lineardegradationmodel.restart.html
https://www.mathworks.com/help/releases/R2021a/predmaint/ref/saverulmodelforcoder.html
https://www.mathworks.com/help/releases/R2021a/predmaint/ref/loadrulmodelforcoder.html
https://www.mathworks.com/help/releases/R2021a/predmaint/ref/rulmodel.readstate.html
https://www.mathworks.com/help/releases/R2021a/predmaint/ref/rulmodel.restorestate.html
https://www.mathworks.com/help/releases/R2021a/predmaint/ug/generate-code-for-predicting-remaining-useful-life.html
https://www.mathworks.com/help/releases/R2021a/predmaint/ug/generate-code-that-preserves-rul-model-state-for-system-restart.html
https://www.mathworks.com/help/releases/R2021a/predmaint/ref/extractspectralfeatures.html
https://www.mathworks.com/help/releases/R2021a/predmaint/ref/extractspectralfeatures.html
https://www.mathworks.com/help/releases/R2021a/predmaint/ug/analyze-gear-train-data-and-extract-spectral-metrics-using-live-editor-tasks.html
https://www.mathworks.com/help/releases/R2021a/predmaint/ug/analyze-gear-train-data-and-extract-spectral-metrics-using-live-editor-tasks.html
https://www.mathworks.com/help/releases/R2021a/predmaint/ug/predict-remaining-cycle-life-of-batteries-from-initial-operation-data.html
https://www.mathworks.com/help/releases/R2021a/predmaint/ug/remaining-useful-life-estimation-using-convolutional-neural-network.html

R2020b

Version: 2.2.1

Bug Fixes

6

R2020a

Version: 2.2

New Features

Bug Fixes

7

Diagnostic Feature Designer: Generate MATLAB code in the app
You can now generate MATLAB code in the app to automate data processing, feature extraction, and
feature ranking computations that you initially performed interactively. Apply this code to any data
set that includes the same variables as the data set that you imported into the app when you
generated the code. For example, you can use this code to compute a feature set for a larger set of
measurement data than the measurement data set that you worked with in the app, or to update the
feature set if you obtain new data.

For more information, see Automatic Feature Extraction Using Generated MATLAB Code.

R2020a

7-2

https://www.mathworks.com/help/releases/R2020a/predmaint/ug/automatic-feature-extraction-using-generated-matlab-code.html

R2019b

Version: 2.1

New Features

Bug Fixes

8

Live Editor Tasks: Interactively perform phase space reconstruction
and extract signal-based condition indicators
Use new Live Editor tasks to perform phase space reconstruction and to extract the approximate
entropy, correlation dimension, and Lyapunov exponent without writing code. The tasks can generate
plots that let you interactively explore the effects of changing parameter values and options. They
also automatically generate code that becomes part of your live script.

In R2019b, Predictive Maintenance Toolbox includes four tasks:

• Reconstruct Phase Space — Reconstruct the phase space with specified or automatically
computed lag and embedding dimension

• Estimate Approximate Entropy — Estimate the regularity of a nonlinear time series
• Estimate Correlation Dimension — Estimate the chaotic signal complexity of a nonlinear time

series
• Estimate Lyapunov Exponent — Estimate the rate of separation of infinitesimally close

trajectories

To use the tasks in the Live Editor, on the Live Editor tab, in the Task menu, select a task.
Alternatively, in a code block in a live script, begin typing the task name and select the task from the
suggested command completions. For an example of using multiple Live Editor tasks in a workflow,
see Reconstruct Phase Space and Estimate Condition Indicators Using Live Editor Tasks.

For more information about Live Editor tasks generally, see Add Interactive Tasks to a Live Script
(MATLAB).

Spectral Analysis: Define frequency bands and extract spectral
features
Faults in electrical motor and rotating machinery components manifest in the spectrum of the motor
current or in drivetrain vibration signals. By analyzing spectral patterns (such as the peak amplitude
or band power) within certain characteristic frequency bands of the signal spectrum, various types of
component faults can be detected or their degradation monitored. Predictive Maintenance Toolbox
offers the following four new commands for generating spectral metrics within specified frequency
bands:

• faultBands — Define fault frequency bands around characteristic fault harmonics and sidebands
within the frequency range of the signal spectrum. For more information, see faultBands.

• bearingFaultBands — Construct frequency components that define bearing faults in the outer
and inner race, rolling element, and cage of a bearing. For more information, see
bearingFaultBands.

• gearMeshFaultBands — Construct frequency components that define gear mesh faults. For
more information, see gearMeshFaultBands.

• faultBandMetrics — Extract spectral features like peak amplitude, peak frequency, and band
power from a signal spectrum using the fault frequency bands obtained using one the above
commands. For more information, see faultBandMetrics.

For an example that demonstrates the use of motor current signature analysis (MCSA) to identify
gear faults, see Motor Current Signature Analysis for Gear Train Fault Detection.

R2019b

8-2

https://www.mathworks.com/help/releases/R2019b/predmaint/ref/reconstructphasespace.html
https://www.mathworks.com/help/releases/R2019b/predmaint/ref/estimateapproximateentropy.html
https://www.mathworks.com/help/releases/R2019b/predmaint/ref/estimatecorrelationdimension.html
https://www.mathworks.com/help/releases/R2019b/predmaint/ref/estimatelyapunovexponent.html
https://www.mathworks.com/help/releases/R2019b/predmaint/ug/reconstruct-phase-space-and-estimate-condition-indicators-using-live-editor-tasks.html
https://www.mathworks.com/help/releases/R2019b/matlab/matlab_prog/add-live-editor-tasks-to-a-live-script.html
https://www.mathworks.com/help/releases/R2019b/predmaint/ref/faultbands.html
https://www.mathworks.com/help/releases/R2019b/predmaint/ref/faultbands.html
https://www.mathworks.com/help/releases/R2019b/predmaint/ref/bearingfaultbands.html
https://www.mathworks.com/help/releases/R2019b/predmaint/ref/bearingfaultbands.html
https://www.mathworks.com/help/releases/R2019b/predmaint/ref/gearmeshfaultbands.html
https://www.mathworks.com/help/releases/R2019b/predmaint/ref/gearmeshfaultbands.html
https://www.mathworks.com/help/releases/R2019b/predmaint/ref/faultbandmetrics.html
https://www.mathworks.com/help/releases/R2019b/predmaint/ref/faultbandmetrics.html
https://www.mathworks.com/help/releases/R2019b/predmaint/ug/motor-current-signature-analysis-for-gear-train-fault-detection.html

Prognostic Ranking in Diagnostic Feature Designer: Rank features to
determine best indicators of system degradation in Diagnostic
Feature Designer
You can now use the monotonicity, trendability, and prognosability methods to determine which
features are the best indicators of system degradation and contribute the most to accurately
predicting remaining useful life (RUL). These methods were first introduced as feature metrics for
the command line in R2018b. Use these methods when you have system run-to-failure data to
determine which condition indicators best track the system degradation process.

To access these methods once you have calculated features, on the Feature Ranking tab, click
Prognostic Ranking. To access one of the ranking methods that were previously available in the
app, on the Feature Ranking tab, click Classification Ranking.

For more information on prognostic ranking in the app, see the Prognostic Ranking parameter
description in Diagnostic Feature Designer.

For more information on the prognostic RUL metrics, see monotonicity, trendability, and
prognosability.

Machine-Specific Rotation Speeds: Filter TSA signals using machine-
specific rotation speeds in Diagnostic Feature Designer
You can now compute machine-specific rotation speeds when you perform time-synchronous
averaging (TSA). Apply these speed values when you filter the resulting TSA signals. Previously, you
could specify only one constant rotation speed value when you filtered TSA signals. Use this approach
to tune the filtered signal more accurately for each TSA signal when their individual rotation speeds
vary.

For an example showing how to work with individual RPM values, see Isolate a Shaft Fault Using
Diagnostic Feature Designer.

generateSimulationEnsemble: Control display of simulation progress
when generating a simulation ensemble
You can now control whether generateSimulationEnsemble displays a simulation progress line in
the MATLAB command window. Previously, generateSimulationEnsemble always displayed
progress. To disable the progress display, set the ShowProgress name-value pair argument to
false.

For more information, see generateSimulationEnsemble.

8-3

https://www.mathworks.com/help/releases/R2019b/predmaint/ref/diagnosticfeaturedesigner-app.html
https://www.mathworks.com/help/releases/R2019b/predmaint/ref/monotonicity.html
https://www.mathworks.com/help/releases/R2019b/predmaint/ref/trendability.html
https://www.mathworks.com/help/releases/R2019b/predmaint/ref/prognosability.html
https://www.mathworks.com/help/releases/R2019b/predmaint/ug/isolate-a-shaft-fault-using-diagnostic-feature-designer.html
https://www.mathworks.com/help/releases/R2019b/predmaint/ug/isolate-a-shaft-fault-using-diagnostic-feature-designer.html
https://www.mathworks.com/help/releases/R2019b/predmaint/ref/generatesimulationensemble.html

R2019a

Version: 2.0

New Features

Bug Fixes

9

Diagnostic Feature Designer: Interactively extract, visualize, and rank
features from measured or simulated data for machine diagnostics
and prognostics
The Diagnostic Feature Designer app allows you to interactively explore and extract features from
ensemble data that contains signals, spectra, and condition labels from multiple members. The app
provides tools for visualization, analysis, feature generation, and feature ranking. You design and
compare features interactively, and then determine which features are best at discriminating between
data from nominal systems and from faulty systems.

To open the Diagnostic Feature Designer, type diagnosticFeatureDesigner at the command
line.

For more information, see Diagnostic Feature Designer.

Gear Condition Metrics: Extract standard gear condition indicators
from time-synchronous averaged signals
You can now use the gearConditionMetrics command to extract standard gear condition
indicators from a set of raw, difference, regular, and residual time-synchronous averaged (TSA)
signals.

For more information, see gearConditionMetrics and Condition Indicators for Gear Condition
Monitoring.

fileEnsembleDatastore: Specify list of ensemble datastore file names
fileEnsembleDatastore now lets you explicitly specify a list of files to include in the ensemble
datastore. Previously, you could provide only a single location folder, and the ensemble datastore
included all files at that location with a specified extension. The new functionality lets you specify a
subset of files in a folder to include, or include files from more than one folder. You can also specify
files using a wildcard character (*). To specify files to include, use the location input argument
when you create the ensemble datastore. For more information, see fileEnsembleDatastore.

R2019a

9-2

https://www.mathworks.com/help/releases/R2019a/predmaint/ref/diagnosticfeaturedesigner-app.html
https://www.mathworks.com/help/releases/R2019a/predmaint/ref/gearconditionmetrics.html
https://www.mathworks.com/help/releases/R2019a/predmaint/ref/gearconditionmetrics.html
https://www.mathworks.com/help/releases/R2019a/predmaint/ug/condition-indicators-for-gear-condition-monitoring.html
https://www.mathworks.com/help/releases/R2019a/predmaint/ug/condition-indicators-for-gear-condition-monitoring.html
https://www.mathworks.com/help/releases/R2019a/predmaint/ref/fileensembledatastore.html

R2018b

Version: 1.1

New Features

Bug Fixes

Compatibility Considerations

10

Feature Selection Metrics: Evaluate features to determine best
indicators of system degradation and improve accuracy of remaining
useful life predictions
Selecting appropriate estimation parameters out of all available features is the first step in building a
reliable remaining useful life (RUL) prediction engine. Predictive Maintenance Toolbox offers three
feature selection metrics for accurate RUL prediction: monotonicity, trendability, and prognosability.
Use these metrics when you have run-to-failure data of systems to determine which condition
indicators best track the degradation process.

For more information, see the monotonicity, trendability, and prognosability reference
pages.

Features for Rotating Machinery: Extract the residual, difference, and
regular signals from a time-synchronous averaged signal to generate
diagnostic feature
You can now use the tsaresidual, tsadifference, and tsaregular commands to extract the
residual, difference, and regular signals from a time-synchronous averaged (TSA) signal, respectively.
These features detect changes in the TSA signal that are indicative of a change in the machine state.

For more information, see the tsaresidual, tsadifference, and tsaregular reference pages.

fileEnsembleDatastore Object: Read all variable types from ensemble
member while loading file only once
When you use a fileEnsembleDatastore object, use the new ReadFcn property to specify one
function for reading all ensemble variables. The read command calls this function to read all data
variables, independent variables, and condition variables that are specified in the
SelectedVariables property of the ensemble datastore.

Previously, you had to specify separate functions DataVariablesFcn,
IndependentVariablesFcn, and ConditionVariablesFcn for reading data variables,
independent variables, and condition variables, respectively. Therefore, the read operation accessed
each member file in the ensemble up to three separate times to read all selected variables. ReadFcn
increases efficiency by allowing read to read all variables in a member file in a single operation.

For more information about using the new property, see the fileEnsembleDatastore reference
page.

Compatibility Considerations
The DataVariablesFcn, IndependentVariablesFcn, and ConditionVariablesFcn properties
of fileEnsembleDatastore will be removed in a future release. Use the ReadFcn property instead.
For more details, see fileEnsembleDatastore.

Ensemble Datastore Objects: Read multiple ensemble members in one
operation
You can now configure both simulationEnsembleDatastore and fileEnsembleDatastore
objects to read more than one ensemble member per call to the read function. By default, calling

R2018b

10-2

https://www.mathworks.com/help/releases/R2018b/predmaint/ref/monotonicity.html
https://www.mathworks.com/help/releases/R2018b/predmaint/ref/trendability.html
https://www.mathworks.com/help/releases/R2018b/predmaint/ref/prognosability.html
https://www.mathworks.com/help/releases/R2018b/predmaint/ref/tsaresidual.html
https://www.mathworks.com/help/releases/R2018b/predmaint/ref/tsadifference.html
https://www.mathworks.com/help/releases/R2018b/predmaint/ref/tsaregular.html
https://www.mathworks.com/help/releases/R2018b/predmaint/ref/fileensembledatastore.html
https://www.mathworks.com/help/releases/R2018b/predmaint/ref/fileensembledatastore.html

read returns a single table row containing data from one ensemble member. To read multiple
ensemble members at once, set the new ReadSize property to a positive integer value. For example,
if you set ReadSize to 3, then calling read returns a three-row table containing data from the next
three ensemble members. The read operation also sets the LastMemberRead to a string vector
containing the file paths of the corresponding three files.

For more information and examples, see the simulationEnsembleDatastore and
fileEnsembleDatastore reference pages.

fileEnsembleDatastore Object: Create ensembles of files with multiple
file extensions
You can now create a fileEnsembleDatastore object to manage an ensemble of files that do not
all have the same file extension. For instance, suppose that you have some data stored in .xls files,
and some stored in .s files. You can create a fileEnsembleDatastore object for these files using a
string array of both file extensions, as follows.

extension = [".xls",".xlsx"];
fensemble = fileEnsembleDatastore(location,extension)

Both fileEnsembleDatastore and SimulationEnsembleDatastore objects also have a new
read-only Files property, which is a string vector containing the file names of all ensemble
members.

For more information about managing files with ensemble datastore objects, see the
fileEnsembleDatastore and simulationEnsembleDatastore reference pages.

Functionality being removed or changed
DataVariablesFcn, IndependentVariablesFcn, and ConditionVariablesFcn properties of
fileEnsembleDatastore will be removed
Still runs

The DataVariablesFcn, IndependentVariablesFcn, and ConditionVariablesFcn properties
of fileEnsembleDatastore will be removed in a future release. Use the ReadFcn property instead.

The ReadFcn property, introduced in R2018b, lets you specify one function to read all variable types
from your ensemble datastore. Formerly, you had to designate functions separately for data variables,
independent variables, and condition variables. An advantage of using ReadFcn is that the read
operation accesses each member file only once to read all the variables. With separate functions for
each variable type, read opens the file up to three times to read all variable types. Thus, designating
a single ReadFcn is a more efficient way to access the datastore.

Update Code

To update your code to use the new property:

1 Rewrite your fileEnsembleDatastore read functions into one new function that reads
variables of all types. (See Create and Configure File Ensemble Datastore for an example of such
a function.)

2 Set DataVariablesFcn, IndependentVariablesFcn, and ConditionVariablesFcn to []
to clear them.

10-3

https://www.mathworks.com/help/releases/R2018b/predmaint/ref/simulationensembledatastore.html
https://www.mathworks.com/help/releases/R2018b/predmaint/ref/fileensembledatastore.html
https://www.mathworks.com/help/releases/R2018b/predmaint/ref/fileensembledatastore.html
https://www.mathworks.com/help/releases/R2018b/predmaint/ref/simulationensembledatastore.html
https://www.mathworks.com/help/releases/R2018b/predmaint/ref/fileensembledatastore.html
https://www.mathworks.com/help/releases/R2018b/predmaint/ref/fileensembledatastore.html#mw_63c43a6b-8d3f-4819-bbca-79704eeb2e67

3 Set ReadFcn to the new function.

currentValue syntax of predictRUL not recommended
Still runs

The following syntax of the predictRUL command is not recommended:

estRUL = predictRUL(mdl,currentValue,threshold)

For a trained degradation model mdl, this syntax estimates the remaining useful life (RUL) based on
the current measured value currentValue of a condition indicator. A more reliable way to estimate
RUL for degradation models is to update the model with each successive measurement of the
condition indicator using the update command. Then, use the updated model to estimate the RUL.

Update Code

Suppose that you store successive condition indicator measurements in an array TestData. The
array contains measurements at regular intervals at least up to the time currentTime for which
currentValue is the condition indicator measurement. To update your code, replace:

estRUL = predictRUL(mdl,currentValue,threshold)

with the following code:

for t = 1:CurrentTime
 update(mdl,TestData(t,:))
end
estRUL = predictRUL(mdl,threshold)

For an example, see the predictRUL reference page.

R2018b

10-4

https://www.mathworks.com/help/releases/R2018b/predmaint/ref/lineardegradationmodel.predictrul.html
https://www.mathworks.com/help/releases/R2018b/predmaint/ref/lineardegradationmodel.update.html
https://www.mathworks.com/help/releases/R2018b/predmaint/ref/lineardegradationmodel.predictrul.html

R2018a

Version: 1.0

New Features

11

Survival, similarity, and time-series models for remaining useful life
(RUL) estimation
Remaining useful life (RUL) is the expected value of time to failure conditional on the history of the
component known by sensor measurements and auxiliary output information. Predictive Maintenance
Toolbox provides similarity models, degradation models, and survival models for RUL estimation. For
more information on these types of RUL estimation, see Models for Predicting Remaining Useful Life.

Time, frequency, and time-frequency domain feature extraction
methods for designing condition indicators
A condition indicator is a feature of system data whose behavior changes in a predictable way as the
system degrades or operates in different operational modes. Such features are useful for
distinguishing normal from faulty operation or for predicting remaining useful life. Predictive
Maintenance Toolbox supplements existing functionality in MATLAB and Signal Processing Toolbox™
with additional functions that can be useful for designing condition indicators. For more information,
see Condition Indicators for Monitoring, Fault Detection, and Prediction.

Managing and labeling of sensor data imported from local files,
Amazon S3, Windows Azure Blob Storage, and Hadoop Distributed File
System
You may have collected measurements on systems using sensors for healthy operation or faulty
condition and stored them in local files, cloud storage platforms or in distributed file systems. You can
organize, read, and manage such measured data using the fileEnsembleDatastore object and use
it for designing your predictive maintenance algorithms. For more information, see File Ensemble
Datastore With Measured Data.

Managing and labeling of simulated machine data from Simulink
models
Instead of data from physical systems, you may have a Simulink model that represents a range of
healthy and faulty operating conditions. The generateSimulationEnsemble function helps you
generate such data from your model. Then use the simulationEnsembleDatastore object to
organize, read, and manage the data for designing your predictive maintenance algorithms. For more
information, see Generate and Use Simulated Data Ensemble.

Examples for developing predictive maintenance algorithms for
motors, gearboxes, batteries, and other machines
This release includes the following examples on data generation, fault detection and diagnosis, and
RUL prediction:

• Data Generation

• Using Simulink to Generate Fault Data
• Multi-Class Fault Detection Using Simulated Data

• Fault Detection and Diagnosis

R2018a

11-2

https://www.mathworks.com/help/releases/R2018a/predmaint/ug/models-for-predicting-remaining-useful-life.html
https://www.mathworks.com/help/releases/R2018a/predmaint/ug/condition-indicators-for-condition-monitoring-and-prediction.html
https://www.mathworks.com/help/releases/R2018a/predmaint/ref/fileensembledatastore.html
https://www.mathworks.com/help/releases/R2018a/predmaint/ug/file-ensemble-datastore-with-measured-data.html
https://www.mathworks.com/help/releases/R2018a/predmaint/ug/file-ensemble-datastore-with-measured-data.html
https://www.mathworks.com/help/releases/R2018a/predmaint/ref/generatesimulationensemble.html
https://www.mathworks.com/help/releases/R2018a/predmaint/ref/simulationensembledatastore.html
https://www.mathworks.com/help/releases/R2018a/predmaint/ug/generate-and-use-simulated-data-ensemble.html
https://www.mathworks.com/help/releases/R2018a/predmaint/examples/Use-Simulink-to-Generate-Fault-Data.html
https://www.mathworks.com/help/releases/R2018a/predmaint/examples/_mw_db08c0b9-5f28-4c59-bf98-819057e183c6.html

• Rolling Element Bearing Fault Diagnosis
• Fault Diagnosis of Centrifugal Pumps using Steady State Experiments
• Fault Diagnosis of Centrifugal Pumps using Residual Analysis
• Fault Detection Using an Extended Kalman Filter
• Fault Detection Using Data Based Models
• Detect Abrupt System Changes Using Identification Techniques

• Prediction

• Similarity-Based Remaining Useful Life Estimation
• Wind Turbine High-Speed Bearing Prognosis
• Condition Monitoring and Prognostics Using Vibration Signals
• Nonlinear State Estimation of a Degrading Battery System

11-3

https://www.mathworks.com/help/releases/R2018a/predmaint/examples/Rolling-Element-Bearing-Fault-Diagnosis.html
https://www.mathworks.com/help/releases/R2018a/predmaint/examples/_mw_1c9f340b-a341-4162-9bb1-d8094591600f.html
https://www.mathworks.com/help/releases/R2018a/predmaint/examples/_mw_050e1288-24dd-4ab7-a70d-b5e6441fcfdc.html
https://www.mathworks.com/help/releases/R2018a/predmaint/examples/Fault-Detection-Using-an-Extended-Kalman-Filter.html
https://www.mathworks.com/help/releases/R2018a/predmaint/examples/Fault-Detection-Using-Data-Based-Models.html
https://www.mathworks.com/help/releases/R2018a/predmaint/examples/Detect-Abrupt-System-Changes-Using-Identification-Techniques.html
https://www.mathworks.com/help/releases/R2018a/predmaint/examples/similarity-based-remaining-useful-life-estimation.html
https://www.mathworks.com/help/releases/R2018a/predmaint/examples/wind-turbine-high-speed-bearing-prognosis.html
https://www.mathworks.com/help/releases/R2018a/predmaint/examples/condition-monitoring-and-prognostics-using-vibration-signals.html
https://www.mathworks.com/help/releases/R2018a/predmaint/examples/nonlinear-state-estimation-of-a-degrading-battery-system.html

	R2023a
	Battery Anomaly Detection: Use correlation to detect anomalies in lithium-ion battery pack
	Diagnostic Feature Designer: Automatically generate features for rotating machinery signals.
	Diagnostic Feature Designer: Generate MATLAB Coder compliant code for streaming data
	Diagnostic Feature Designer: Export Simulink block that extracts top-ranked features from measured signals
	Diagnostic Feature Designer: Compute envelope of input signals to detect rotating machinery faults
	Diagnostic Feature Designer: Import labeled signal sets from Signal Processing Toolbox
	Diagnostic Feature Designer: Display features in ranked order for feature selection and plotting

	R2022b
	Diagnostic Feature Designer: Automatically generate a diverse feature set using Auto Features
	Diagnostic Feature Designer: Create custom features to use in the app
	Diagnostic Feature Designer: Preview results when applying time series transformations to signal data
	Diagnostic Feature Designer: Generate AR model-based features
	Lithium-Ion Battery Fault Detection: Identify the worst cell in a battery pack using meanDifferenceModel
	New Example: Broken Rotor Fault Detection in AC Induction Motors Using Vibration and Electrical Signals

	R2022a
	Diagnostic Feature Designer: View session variables by type and obtain processing sequence and history
	Diagnostic Feature Designer: Extract time series features from signal data
	Remaining Useful Life (RUL) Prediction: Generate C/C++ code using MATLAB Coder for RUL prediction based on a similarity model
	Rotating Machinery Metrics: Generate C/C++ code using MATLAB Coder to extract time-synchronous averaged signals
	Nonlinear Feature Extraction: Generate C/C++ code using MATLAB Coder to identify signal-based nonlinear features
	Time-Frequency Feature Extraction: Generate C/C++ code using MATLAB Coder to extract spectral, temporal, and joint moments of time-frequency distributions from signals
	New Example: ThingSpeak Dashboard for Live RUL Estimation of a Servo Motor Gear Train

	R2021b
	Diagnostic Feature Designer: Generate spectral features for characteristic fault frequency bands in rotating machinery
	Diagnostic Feature Designer: Rank features extracted from unlabeled data
	Diagnostic Feature Designer: Use a streamlined workflow for plotting, data processing, and feature extraction
	Remaining Useful Life (RUL) Prediction: Generate C/C++ code using MATLAB Coder for RUL prediction that is based on a survival model
	Rotating Machinery Metrics: Generate C/C++ code using MATLAB Coder for gear condition metrics and fault band metrics
	New Example: Live RUL Estimation of a Servo Gear Train using ThingSpeak
	New Example: Fault detection and diagnosis using artificial intelligence

	R2021a
	Diagnostic Feature Designer: Import data using an updated interface with more flexible options
	Diagnostic Feature Designer: Preselect signals and spectra to process
	Diagnostic Feature Designer: Use tooltips to obtain the history of processing and data sources for derived variables
	Ensemble Datastores: Use the subset function to extract ensemble members that you specify from an existing ensemble into a new ensemble
	Remaining Useful Life (RUL) Prediction: Generate C/C++ code using MATLAB Coder for the prediction, update, and restart of an RUL prediction that is based on a degradation model
	Live Editor Tasks: Interactively define fault frequency bands and extract spectral metrics
	RUL Examples: Predict RUL using artificial intelligence

	R2020b
	R2020a
	Diagnostic Feature Designer: Generate MATLAB code in the app

	R2019b
	Live Editor Tasks: Interactively perform phase space reconstruction and extract signal-based condition indicators
	Spectral Analysis: Define frequency bands and extract spectral features
	Prognostic Ranking in Diagnostic Feature Designer: Rank features to determine best indicators of system degradation in Diagnostic Feature Designer
	Machine-Specific Rotation Speeds: Filter TSA signals using machine-specific rotation speeds in Diagnostic Feature Designer
	generateSimulationEnsemble: Control display of simulation progress when generating a simulation ensemble

	R2019a
	Diagnostic Feature Designer: Interactively extract, visualize, and rank features from measured or simulated data for machine diagnostics and prognostics
	Gear Condition Metrics: Extract standard gear condition indicators from time-synchronous averaged signals
	fileEnsembleDatastore: Specify list of ensemble datastore file names

	R2018b
	Feature Selection Metrics: Evaluate features to determine best indicators of system degradation and improve accuracy of remaining useful life predictions
	Features for Rotating Machinery: Extract the residual, difference, and regular signals from a time-synchronous averaged signal to generate diagnostic feature
	fileEnsembleDatastore Object: Read all variable types from ensemble member while loading file only once
	Ensemble Datastore Objects: Read multiple ensemble members in one operation
	fileEnsembleDatastore Object: Create ensembles of files with multiple file extensions
	Functionality being removed or changed
	DataVariablesFcn, IndependentVariablesFcn, and ConditionVariablesFcn properties of fileEnsembleDatastore will be removed
	currentValue syntax of predictRUL not recommended

	R2018a
	Survival, similarity, and time-series models for remaining useful life (RUL) estimation
	Time, frequency, and time-frequency domain feature extraction methods for designing condition indicators
	Managing and labeling of sensor data imported from local files, Amazon S3, Windows Azure Blob Storage, and Hadoop Distributed File System
	Managing and labeling of simulated machine data from Simulink models
	Examples for developing predictive maintenance algorithms for motors, gearboxes, batteries, and other machines

